Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38004646

RESUMO

N deposition is a key factor affecting the composition and function of soil microbial communities in wetland ecosystems. Previous studies mainly focused on the effects of N deposition in the soil during the growing season (summer and autumn). Here, we focused on the response of the soil microbial community structure and function in winter. Soil from the Sanjiang Plain wetland, China, that had been treated for the past 11 years by using artificial N deposition at three levels (no intervention in N0, N deposition with 4 g N m-2 yr-1 in N1, and with 8 g N m-2 yr-1 in N2). Soil characteristics were determined and the bacterial composition and function was characterized using high-throughput sequence technology. The N deposition significantly reduced the soil bacterial diversity detected in winter compared with the control N0, and it significantly changed the composition of the bacterial community. At the phylum level, the high N deposition (N2) increased the relative abundance of Acidobacteria and decreased that of Myxococcota and Gemmatimonadota compared with N0. In soil from N2, the relative abundance of the general Candidatus_Solibacter and Bryobacter was significantly increased compared with N0. Soil pH, soil organic carbon (SOC), and total nitrogen (TN) were the key factors affecting the soil bacterial diversity and composition in winter. Soil pH was correlated with soil carbon cycling, probably due to its significant correlation with aerobic_chemoheterotrophy. The results show that a long-term N deposition reduces soil nutrients in winter wetlands and decreases soil bacterial diversity, resulting in a negative impact on the Sanjiang plain wetland. This study contributes to a better understanding of the winter responses of soil microbial community composition and function to the N deposition in temperate wetland ecosystems.

2.
Front Plant Sci ; 9: 1156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150997

RESUMO

In this study, the effects of inoculating arbuscular mycorrhizal fungi (Glomus mosseae) on the growth, chlorophyll content, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of Lolium perenne L. in cadmium (Cd) contaminated soil were investigated. The results showed that the root vigor of L. perenne declined, while the chlorophyll content significantly decreased with the increase of Cd content, especially the chlorophyll a content in leaves. The photosynthetic carbon assimilation capacity and PSII activity of L. perenne leaves were also significantly inhibited by Cd stress, especially the electron transfer at the receptor side of PSII, which was more sensitive to Cd stress. The infection level of G. mosseae on L. perenne roots was relatively high and inoculation with G. mosseae increased the mycorrhizal infection rate of L. perenne roots up to 50-70%. Due to the impact of the mycorrhizal infection, the Cd content in L. perenne roots was significantly increased compared to non-inoculated treatment; however, the Cd content in the aboveground part of L. perenne was not significantly different compared to the non-inoculated treatment. After inoculation with G. mosseae, the root vigor of L. perenne increased to some extent, alleviating the chlorophyll degradation in L. perenne leaves under Cd contaminated soil. Infection with G. mosseae can improve the stoma limitation of L. perenne leaves in Cd contaminated soil and increase the non-stomatal factors including the tolerance of its photosynthetic apparatus to Cd, to improve photosynthetic capacity. G. mosseae infection can improve the photosynthetic electron transport capacity of PSII in L. perenne leaves under Cd stress and promotes the activity of the oxygen-evolving complex to different degrees at the donor side of PSII and the electron transport capacity from QA to QB on the receptor side of PSII. Thus, this guarantees that L. perenne leaves inoculated with G. mosseae in Cd contaminated soil have relatively higher PSII activity. Therefore, inoculation with G. mosseae can improve the capacity of Cd tolerance of L. perenne with regard to various aspects, such as morphological characteristics and photosynthetic functions, and reduce the toxicity of Cd on L. perenne.

3.
PeerJ ; 4: e2125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366639

RESUMO

The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius "Diabolo" from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA) and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius "Diabolo" compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius "Diabolo" under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius "Diabolo" that were rich with anthocyanin. However, in response to low light, AQY, P max, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius "Diabolo" compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius "Diabolo" exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius "Diabolo." In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS) II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the low light stress in the leaves of both Physocarpus cultivars, and that the low light intensity significantly inhibited electron transfer on the acceptor side of PS II and reduced the activity of the oxygen-evolving complex (OEC) in the leaves of both Physocarpus cultivars. The PS II function in P. opulifolius "Diabolo" was higher than that in P. amurensis Maxim in response to low light. Under low light, the composition of photosynthetic pigments was altered in the leaves of P. opulifolius "Diabolo" in order to maintain a relatively high activity of primary photochemical reactions, and this is the basis of the greater photosynthetic carbon assimilation capacity and one of the main reasons for the better shade-tolerance in P. opulifolius "Diabolo."

4.
Huan Jing Ke Xue ; 37(9): 3598-3605, 2016 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964798

RESUMO

To understand the wetland soil fungal community structure and diversity in different degeneration Deyeuxia angustifolia wetlands, the topsoil (0-20) of three different degeneration D. angustifolia wetlands were collected in the Sanjiang Plain field experiment station of the Institute of Nature and Ecology, Heilongjiang Academy of Sciences. The distribution and variation of soil fungal diversity were assessed by high-throughput sequencing method. The results showed that Shannon-Wiener index increased from marsh Deyeuxia angustifolia wetland marsh meadow Deyeuxia angustifolia wetland meadow Deyeuxia angustifolia wetland. Sequence blast showed that the fungal taxonomy belonged to Ascomycota, Basidiomycota, Chytridiomycota, Fungi_unclassified, Zygomycota, which dominant fungi were Fungi_unclassified (75.12%),Ascomycetes (56. 56%), Basidiomycetes (72.65%) in the three degeneration wetlands, respectively. The fungal structure compositions and diversities of marsh meadow Deyeuxia angustifolia wetland and meadow Deyeuxia angustifolia wetland were similar according to Heatmap analysis. The fungal community structure was influenced by soil nutrients (explained 88.62%) and plant composition (explained 9.85%) through the Variation partition analysis (VPA). In conclusion, the fungal community structure was significantly different, which was influenced by soil water content, in different degeneration Deyeuxia angustifolia wetlands in Sanjiang plain. The results may supply scientific basis for studying fungal diversity and spatial heterogeneity in degeneration wetlands.


Assuntos
Fungos/classificação , Poaceae , Áreas Alagadas , China , Solo , Microbiologia do Solo , Água
5.
PLoS One ; 8(6): e66563, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818943

RESUMO

BACKGROUND: Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Áreas Alagadas , Biomassa , Ciclo do Carbono , China , Geografia , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Nitratos/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Chuva , Estações do Ano , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...